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ANGLE-OF-ATTACK CONVERGENCE OF SPINNING BODIES
ENTERING PLAﬂETABI ATMOSPHERES AT LARGE
INCLINATIONS TO THE FLIGHT PATH
By Murray Tobak and Victor L. Peterson

Ames Research Center
Moffett Field, Calif.

SUMMARY

An analysis is made of the angle-of-attack history of a spinning body
entering a planetary atmosphere at an arbitrarily large inclination to the
flight path. An asymptotic solution for the resultant angle of attack is
derived, applicable to any axially symmetric body having an aerodynamic
restoring-moment coefficient proportional to the sine of the resultant angle
of attack. The solution yields results in satisfactory agreement with results
obtained from numerical integrations of the exact equations of motion.

INTRODUCT ION

In a recent analysis of the atmospheric-entry dynamics of spheroidal
tektites (ref. 1), the authors were led to study the motions of a spinning
body entering the atmosphere at an arbitrarily large inclination to the flight
path. An expression for the history of the angle-of-attack envelope is
offered without proof in reference 1 as a generalization of a useful result
given previously by Leon in reference 2. The generalization retains the
concise form of the original while removing the restriction to small initial
inelinations; it is applicable to the motion of any axially symmetric body
having an aerodynamic restoring-moment coefficient proportional to the sine
of the resultant angle of attack.

Vehicles destined for use as planetary probes no doubt often will be
spin-stabilized and, moreover, often will have profiles derivable from that
of the spheroid. For such profiles, the aerodynamic restoring-moment coeffi-
cient will be reasonably well approximated by a function proportional to the
sine of the angle of attack. Hence, the expression derived initially to
explain the motions of tektites may apply directly to the motions of probe
vehicles as well. In view of this, it is deemed advisable to present here a
complete derivation and evaluation of the result cited in reference 1.

In connection with the nonlinear problem considered here, two antecedent
papers, unknown to the authors during the preparation of this report, should
also be cited.} Reference 3 contains a derivation of the nonlinear

1The authors are indebted to Mr. Percy J. Bobbitt for bringing these
papers to their attention.



differential equation governing the angle-of-attack motion; the ensuing
analysis, however, is devoted to the frequency and precession rate of the

motion rather than the angle-of-attack envelope studied here.

Reference 4 is

addressed to the same problem as that of the present report, but the analysis
does not lead to a solution having the concise functional form of the one

presented here.

SYMBOLS

reference area
restoring moment

QA7

restoring-moment coefficient,
dependent variable, tan g
parameter defined by equation (L46)

altitude

moment of inertia about x' or y' axis

moment of inertia about z' axis

JI

Bessel functions of imaginary order

reference length

magnitude of aerodynamic moment vector

axes, respectively

angular velocities about =z', x', y'

dynamic pressure, % pV2

dynamic pressure parameter, PVi sin 7
time
flight velocity

axes having fixed directions in space, origin at center of
gravity of body (sketch (a))

independent variable (eq. (20))

axes fixed in body, origin at center of gravity (sketch (a))

dependent variable (eq. (31))
angle of attack in planar motion
density parameter (eq. (13))
flight-path angle



- - Al
K value of x at t = 0, J/EE Qi T Crmax (eq. (20))
A I;r - I
I
. I
v spin parameter, Pi 2z
s I
= A . 2 04
% modified spin parameter, v cos 3
E dependent variable, gL
i
o) density of planetary atmosphere
% density of planetary atmosphere at surface of planet
PV, 0 Eulerian angles, with ¢ measuring resultant angle of attack
(sketch (a))
) complex angular velocity, g + ir
. d
() = ()
dt (
d
() = ()
dx
( )i initial value
™ complex conJjugate of quantity
( )max maximum value of gquantity
( )pipn minimum value of quantity

( Jepy envelope of oscillatory function
ANALYSIS

The following assumptions and approximations, common to references 1 and
2, are retained in the ensuing analysis:

(a) Rotation of planet and atmosphere are neglected.

(b) Aerodynamic damping terms are neglected, so that the aerodynamic
moment coefficient is proportional to resultant angle of attack
only.



(c) Flight-path angle 7y and velocity V remain constant at their
initial values 74 and Vi.

Assumption (c) limits applicability of the analysis to the initial portion of
the entry during which the dynamic pressure increases rapidly with time. It
will be seen, however, that the end results can be cast in a form which
circumvents this limitation.

As assumption (c) serves to define the motion of the center of gravity,
only the motion of the body about the center of gravity need be considered.
To this end, two orthogonal coordinate systems are affixed to the center of
gravity as shown on sketch (a). The X, ¥, Z axes are reference axes having

fixed directions in space, the 2
axis being alined with the direction

z of the velocity vector. The x', y',
z' axes are principal axes fixed in
z the body, the 2z' axis being coinci-

dent with the body's longitudinal axis.
The body has cylindrical symmetry
about the z' axis so that, with prod-
ucts of inertia absent, Ix' = Iy' = I.
The body axes are oriented relative to
the reference axes by the Eulerian

vy angles @, V¥, 0, with o measuring
the resultant angle of attack. By
assumption (b) and symmetry the aero-
dynamic force on the body lies in the
o plane. Hence, the aerodynamic
moment about the center of gravity is
a vector directed normal to the o
plane, or along the line of nodes.

\ Line of nodes

Z Fught path direction Let p, g, r be the components of

z' Body oxs of rotation angular velocity about the z', x', y'
R | k . .

o Resultant angle of attoc axes, respectively. The equations of

motion are (ref. 5)

Sketeh (a) Izt 5 =0

I - (I - Iz')pr = M(o)cos ¥ (1)
Ir + (I - I,t)pg = -M(o)sin ¥

where M(o) is the magnitude of the aerodynamic moment vector and where the
relations between p, g, r and the Eulerian angles are (ref. 5)

p=(cos o+
q = ¢sin o sin ¥ + & cos ¥ (2)
r = ¢ sin g cos ¥ - & sin V¥



The first of equations (1) integrates immediately, showing that the roll rate
p remains constant at p;- The two remaining equations are combined by the
formation of a complex angular rate w,

w=gq + ir (3)
to give
w - iApiw = M%gl e~V (&)
where
A=l ol (5)
1

Another expression for w 1is obtained from equations (2), namely
w=e W&+ id sin o) (6)
Equation (6) and its derivative may be substituted in equation (%) to elimi-

nate w. There results a complex equation which may be broken into the two
real equations

¢ + §0; + Psin o = 2] (Ta)
L (9 sin o) - 50, + 1) = 0 (7o)

Consider equation (Tb). From equations (2)
Ap; + ¥ =pi(AN +1) - Pecos g (8)

Substituting equation (8) in (7b) and multiplying through by sin o gives

a4

- _ a
= (¢ sin® o) = -p; (N + 1) 3 08 O (9)

which may be integrated to yield

@ = Pi(k + 1) cos gin; zos ﬁ) (lO)

where the initial condition @i = 0 has been invoked. The latter condition
is consistent with the specification that initially the body axis 2z' have a
fixed direction with respect to space-fixed coordinates. On the substitution
of equations (8) and (10) in (7a) and some manipulation, a differential
equation for o alone is obtained of the following form



o sin3 o + hpiz(% +1)% [(} - 2 sin® %%) sin® g - <? - 2 sin® g> sin®* %%}

sin® ¢ (11)

At this point, the aerodynamic pitching-moment coefficient Cp(o) is specified
to be proportional to the sine of the resultant angle of attack; that is,

Cm(o) = Cmy,, sin o (12)

Further, as in references 1 and 2, the assumption that the density of the
planetary atmosphere varies exponentially with altitude is introduced

p = poe“Bh (13)

which, together with assumption (c), gives for the dynamic pressure

Q = qeSt (1)
where
—Bh=
Qi = % pOVize Phy
(15)
s = BVi sin 74
Let
2
KS _ Al
<—é_> = Q1 T Ompex (16)
so that
2
M G) = %ﬂ = E st -
> - Cu(a) <2>e sin @ (17)
Also, let
=P Z P Lpt
V== (N + 1) 5 = (18)

Equation (ll) becomes

¢ sin® o + H(vs)2[<; - 2 sin® %%) sin% g - <? - 2 sin® g> sin? %%}



Finally, in conformity with reference 1, the new independent variable x is
introduced

x = ke5t/2 (20)
together with the transformation
f = tan o/2 (21)
which bring equation (19) to
" 2ff® f! 2 (142 (£t - 54t
'(x) - &2 —— + 1+ £ + 2 i)=0 (22)
1 + f2 b’y x2 \1 + f4 3

Fixing the initial inclination of the body z' axis with respect to space-
fixed coordinates requires that the initial conditions on f be

1]

fi = f(k) = tan oy/2
(23)

H
£, = f'(k) =0

Equation (22) (with (23)) is the fundamental equation of this report.
Asymptotic Solution

An asymptotic solution of equation (22) will be obtained in a manner
similar to that of reference 1. First, let us normalize the dependent
variable by

e (24)

and rearrange the differential equation so that

AL < v :f 1-t* fizl: 266 1 - e* 2+ £3%2))
X L+ £18/  x2¢3 1+ 1262 %2 & (1 +£42)3

(25)

Equation (25) reveals that for small £ (i.e., small o3), the right side
becomes negligibly small and may be put to zero. The resulting equation can
be solved exactly. This is the problem treated in reference 2. For larger -
values of f4, an exact solution cannot be obtained. It can be shown,
however, that for large x, the leading terms on the right side will die out
as x 3/2 wvwhereas those on the left side will die out as x /2. Hence, the
left side of equation (25) will govern the asymptotic behavior of the solu-
tion. Note that, with f; different from zero, the spin parameter v on

the left side is now modified by a factor dependent on initial inclination.
Let the modified spin parameter be denoted by VvV where



V=Y = vcos2 g;/2 (26)

S Y-
and, for brevity, let
g(x) = fiz[j“ggifi—- £ o LotR B B ] (27)
1+ £3262 xR ¢ (1 + £32)2
so that equation (25) becomes
A l;ggéi = g(x) (28)
Complex equation.- Equation (28) is now cast in a simpler form. It can

be shown that the following pair of coupled equations is equivalent to
equation (28):

e" + %% + e +2 % 7' = g(x) sin u
(29)
7" +-%; +7 -2 % €' = g(x) cos p
where
€ = £ sin p
(30)
n=2£§cosu
Forming the complex function
y =€ +1in (31)
and adding in equations (29) gives a single equation
v+ L (1 - 219) +y = ga(x) (32)
with
g1(x) = ig(x)e™™ (33)

Having a sclution for y, one obtains the desired solution for §2 simply by
forming the conjugate solution y and multiplying, for by equations (30) and

(31)
£% = yy (34)

Asymptotic behavior.- The form of the left side of equation (32)
suggests that the behavior of y will be similar to that of the Bessel
function of imaginary order J_ip(x). To put this in evidence, the method of




variation of parameters is used to cast equation (32) in the form of an
integral equation involving the Bessel function. Thus, when the initial
conditions of equations (23) are invoked,

X
y = x5 {aJ_r(x) -z f i gl(u)l:Jr(u)J_r(x)— Jr(x)J_r(u)}du}
(35)
with
a = 1 MTr(1 - p)
r = iv

For smgll f4 +the integral may be discarded and the solution will be simply
the first term. For arbitrary fi, the asymptotic behavior of equation (35)
is obtained as follows: Write equation (35) as

o]

v = % {aJ_r(x) - fﬁ% gl(u)[Jr(u)J_r(x) . Jr(x)J_r(u):ldu
K
vz fglf‘nlim gl(u)[Jr(u)J_r(X) - Jr(x)J_r(u)]du} (36)
X

The second integral vanishes faster than x~1/2 for x - o and hence may be

discarded. Then the asymptotic behavior of y(x) is

y = xr[alJ_r(x) + ler(x)} (37)

where
[ee]

B . wlr
ai1 = a - §\/pgzﬁ—z; g1(uw)Jr(u)du
K

(o]
1-r
by = g \/ﬁ—B———— g1(uw)J_p(u)du
J sin mr

The asymptotic behavior of the conjugate solution is

Sr‘ P X—r’:g.lJr(X) + BlJ_r(X):] (38)



so that &2 varies asymptotically as
£% = (2381 + bigl)Jr(X)J_r(X) + alglJ_r2<X) + 81017, (x) (39)

A more convenient form for ¢2 is obtained when the expression is normalized
with respect to the solution for small ;. Thus

2 [alél +biby @101l p2(x) + a1b1dp2(x)

ad aady(x)J_p(x)

]aéJr(x)J_r(x) (ko)

Envelope curves.- In order to find the envelope curves, the Bessel
functions in equation (40) are replaced by the leading terms of their asymp-
totic expansions. The possibility of Vv %being large is covered if the asymp-
totic expansions appropriate to simultaneously large 7V and x are used.

From reference 6, one obtains N

2 i -
J_.— o~ — e COSGPi-'—' 'V>
19() NENE S 2

P (h)
Jiv(x) & ——=2 cos< o é>
o E R
with '
P = Jx2 VP - E - ¥ sinh™?t % (L2)
Then
8T_: 5 )Jy5(x) ® ——2—— (1 - i¥)I(1 + i7) n2 I _ '2> b
88J_;3(x) Iy p(x A ( iv)I( iv) { cosh® sin2 @ (43)
Since
(L - i9)I(L + 19) = — (Lk)

sinh v

equation (43) becomes

an—iT/(X)JiT/(X) =~

e I = (45)

2
T x2 + R <¥anh /2 cosh2 xv/2

The quantity in brackets is a positive oscillatory function of constant
amplitude, varying within the limits +tanh® ﬂ?/E and unity. Now consider
the quantity in brackets in equation (40). When the Bessel functions are
replaced by eguations (41), the convergence factor (x2 + 72)~1/2 is seen to
occur in both the numerator and denominator of the second term. Hence, this
factor cancels, so that the quantity in brackets also is a positive oscilla-
tory function of constant amplitude. Let

10




t

c2 - [alél + biby . aibid-r2(x) + 5ib1Jr2(X)] < __sin2 @ (46)
ag aadp(x)J_p(x) cosh2 v/

As each factor in equation (46) is a positive oscillatory function of constant
amplitude, so is their product.2 Equation (46) reveals that there will be two
positive envelope curves for £, a maximum and a minimum. This is as it
should be: The resultant angle of attack ¢ dis always positive; when it is
also oscillatory, it is clear that there must be a positive lower bound to

the oscillation as well as an upper one. From equations (45) and (46), the
envelope curves take the form

2 /2

(E)max env = = -
n.Jx2 + V2 J tanh wv/2

). -/ 2 / /2 G (01,v)
(Emin env ﬁNﬁ;5_1—5§ tanh v/ 0 7

It remains to determine the parameters Gygx and Gpin. This must be done
numerically, and sketch (b) indicates the appropriate procedure. The exact
variation of ¢ with x 1s obtained
from numerical integration of equation
(25). When the product (x® + w)1/%¢
is formed and plotted against x, the
curve will approach a constant ampli-
tude oscillation with increasing x.
The upper and lower bounds of the G
oscillation, which are proportional to ! I
Gpax and Gpin, are easily measured from

the figure. Curves of Gpax and

Cmin/Cmax as functions of g4 are Sketeh (b)
presented on figures 1 and 2 for a range of values of the spin parameter v.
To aid in interpolation, the parameters are also presented on figures 3 and L
as functions of v for several values of o;. Having Gmax, Gmin> and
equation (47), one can determine the envelope curves of the physical variable
o. Invoking equations (21) and (24) casts equation (47) in the form

Cmax (03 V)
(1)

(x2+52)/%¢

ZAn apparent contradiction with a result of reference 3 should be
resolved here. It is indicated in reference 3 that the oscillation frequency
for small o may not be given correctly by the linear theory except in a
certain special case. In contrast, equation (46) indicates that as of = O
the linear theory does give the correct result, for as o - 0 the first
factor in equation (46) approaches unity leaving the second factor, the
linear theory result, to describe the frequency. The contradiction is
resolved, however, when it is noted that the problem under study, wherein the
body's axis of spin is initially fixed with respect to space-fixed coordi-
nates (i.e., no wobble) is just the special case noted in reference 3 for
which the linear theory does in fact give the correct result for frequency as
oi = O.

11
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(tan o/2)max env _ 2 [ /2
= —— Gmax(oj,v)
tan oi/2 %2 + 78 ~tanh wv/2

(tan 6/2)min env _ 2 [—;EVE___ Cmin(oi,v)

tan o3/2 N x2 + 2 J tannh /2

(48)

Finally, the expedient adopted in reference 1 to extend the applicability of
the results may be adopted here as well. The coordinate x 1is related to
dynamic pressure through equations (14) and (20), namely

x = kJQ/Q; (k9)

When equation (4#9) is substituted in equations (4#8) the form agrees (for
negligible aerodynamic damping and tanh nv/2 = 1) with the asymptotic form
given in reference T for the case of small o3. The result of reference 7,

a more general one than that of reference 2, is independent of assumptions
concerning flight-path angle or flight speed. IHence, in spite of the restric-
tions regarding these quantities underlying the development of equations (L8)
(7 =75, V = V;), the equations should yield an accurate representation of the
asymptotic behavior even when V and y are not constant if, after replacing
x2 1in equations (48) by «2Q/Q;, one replaces Q/Qi by a more precise
expression than equation (14).

Envelope curves for small v.- For small to moderate values of v
(i.e., 72 << x2), equations (L48) take the form

(tan 0/2)max env 2 1v/2
= = =72 G (0s,v) (50a.)
tan o03/2 N
(tan o/2)min env 2 /2
= | = [—>—— Gpin(oi,v) 50b)
tan o;/2 ™ [tanh /2 o (

Consider the maximum envelope and now let v be identically zero. The
resulting motion is planar; let the angle of attack for planar motion be
designated by the symbol o. Thus

(tan G/E) _ ) )
tan @i/znv ﬁw/;; Crax(01,0) (51)

This is the envelope curve for a nonspinning body which enters the atmosphere
at the initially fixed inclination aj. The result checks equation (30) of
reference 1. The ratio of equations (50a) and (51) for the same initial
inclination (o3 = ai) gives

(tan 0/2) max env =V/ 77/2  Cumex(0i,v) (52)
(tan @/2)epy tanh nv/2 Gypgx(0i,0)

1k




As will be evident from figure 1, Gmsx(oi,v) does not change significantly
for small changes in v. Hence, the ratio involving Gpgx in equation (52)
is essentially unity. The result shows that for small v, the envelope curve
of the spinning body is increased over that of the nonspinning body by a
constant factor dependent only on 7Vv. This is the result reported in
reference 1 which generalizes to large inclinations a prior result given in
reference 2.

DISCUSSION

Results of the analysis will be discussed as they apply in particular to
the motions of planetary probe vehicles. In addition, their accuracy will be
indicated in the form of comparisons with results obtained by numerical
integrations of the exact equations of motion.

Consider first the relationship between the maximum envelope of the
resultant angle of attack for a spinning body and the envelope for a nonspin-
ning body. Equation (52) shows this relationship to be independent of the
coordinate x, and hence of the body's aerodynamic characteristics, so long
as the square of the modified spin parameter is much less than the square of
the coordinate (52 << %2). The results of reference 1 can be used to show
that x generally becomes very large before the aerodynamic and heating
loads reach large fractions of their maximum values. Over the latter portion
of the trajectory, the portion of prime interest, the inequality will hold;
hence it is appropriate to use equation (52) to illustrate the effects of
spin. The results are presented on figure 5 for several values of the initial

)

T

7 o
N ;5

Eaesel
] s

‘.,xg,““x... T "“.m.

(tan o/2)max env
(tan a@ /2)gqy

sk

HIHTE T EHEARTS it Rl T e i I R
O .5 s e B A LS M R A
o] 2 a4 6 8 1] 12 14 16 18 20
Spin parameter, v

Figure 5.- Effect of spin on the maximum envelope of the resultant angle of attack.
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inclination. They give a useful measure of the penalty factor attached to
spin-stabilization, namely, a widening of the angle-of-attack envelope beyond
that of the nonspinning body. The curve shown for small initial angles

(o; » 0) is identical to the result presented in reference 2; the penalty
factor, which increases essentially as v1/2, is seen to be a maximum for this
case. TFor larger values of the initial angle, the penalty factor falls off
from this curve essentially as cos Gi/E.

Now consider the relationship between the minimum and maximum envelopes
for the spinning body. Forming the ratio (tan O/E)min env/(tan O/E)max env?
one notes from equations (48) that it is just the ratio Gmin(o;,v)/Guax(oi,v),
which already has been plotted as figures 2 and 4, The latter figure shows
that the ratio rapidly approaches unity with increasing v, essentially as
tanh n?/2. The foregoing results suggest the following description of the
motion: The angle o 1in effect traces the movement of the body nose about
the velocity vector. Initially, o 1is fixed in value and the plane containing
0 1is fixed in inclination, but as the body penetrates deeper into the atmos-
phere ¢ Dbegins to diminish while the ¢ plane begins to rotate about Z.
Thus an observer on the Z axis sees the body nose trace out a diminishing
spiral. The amplitude of successive turns of the spiral diminishes in
accordance with the convergence factor (x2 + v2)"1/4, TFor small values of the
spin parameter v the motion is nearly planar, so that the spiral has a large
eccentricity (i.e., Gmin/Gmax - 0). Larger values of v cause the spiral to
open out so that each turn becomes nearly circular (i.e., Gmin/Cmsx = 1) .
Here, the merging of the envelopes means that the envelope curve itselfl
becomes the actual angle-of-attack history. The effect of increasing oy,
for a fixed value of v, is to give the spiral a greater eccentricity;
alternatively, larger values of spin rate are required to make the turns
circular as the initial angle is increased.

Results of the analysis, shown in the form of variation of the resultant
angle-of-attack envelopes with stagnation-point heating rate, are compared in
figure 6 with results obtained by numerical methods. The latter results, in
which no approximations were made either to the equations of motion or to the
aerodynamic forces and moments, were obtained from the equations, entry con-
ditions, and vehicle and planetary properties given in reference 8; the
results are considered illustrative of those anticipated for a Mars entry.
For the analytic results, the magnitude Cmygyy ©Ff the aerodynamic restoring-
moment coefficient had to be specified in order to relate the coordinate x
to aerodynamic heating rate Iin the manner indicated in reference 1. The value
of Cmpygyx was chosen such that the area under a half-cycle of the approxi-
mating sine function curve equalled that under the experimentally determined
pitching-moment curve for the vehicle studied in reference 8. The values
used for Cmpax and those for other physical properties of the vehicle are
given here for reference (cf., also sketch (c)):

Cogax = —0-162

A = 8.296 ft2

I,+ = 2.8 1b-ft-sec?

16
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Figure 6.- Angle-of-attack envelopes as a function of fraction of maximum heating rate for a
Mars entry; spin rate = 30 rpm.

I=5.6 1b-ft-sec?
1 = 3.25 ft

m = 6.685 1b-sec2/ft

Cp = 0.650
The martian atmosphere and other entry
conditions are given as:
B = 2.15X107° per ft
[e— 417 ]
Vi = 21,042 ft/sec
e~ 82}
')’l = )4-1-50
so that
s = BVy sin 7; = 0.30 per sec Sketch (c)
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Agreement between numerically and analytically determined results for the
angle-of-attack envelopes is seen to be satisfactory. Note that the maximum
and minimum envelopes coincide for the conditions chosen for figure 6(b). In
this case, the envelope curves shown represent actual angle-of-attack
histories.

Additional comparisons are made in figure 7 which shows the effect of
spin rate on the maximum envelope of resultant angle of attack at the point

60
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Present theory
—— —— — Exact numerical solution
| —
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Figure T.- Effect of spin on the maximum envelope of the resultant angle of attack; evaluated
at point on a Mars entry trajectory where stagnation-point heating rate is maximum.

in the trajectery where stagnation-point heating rate is maximum. Satisfac-
tory agreement between analytical and numerical results is indicated over the
entire range chosen for the spin parameter.

CONCLUDING REMARKS

An analysis has been made of the angle-of-attack history of a spinning
body which enters a planetary atmosphere at an arbitrarily large inclination
to the flight path. An asymptotic solution for the resultant angle of attack
was derived in a form that illustrates its functional dependence on vehicle
and planetary properties. The solution applies to any axially symmetric body
having an aerodynamic restoring-moment coefficient proportional to the sine
of the resultant angle of attack. The solution was found to yield results in
satisfactory agreement with results obtained from numerical integrations of
the exact equations of motion.
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